Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
medrxiv; 2024.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2024.03.15.24304277

ABSTRACT

Introduction: The spring 2023 COVID-19 booster vaccination programme in England used both Pfizer BA.4-5 and Sanofi vaccines. All people aged 75 years or over and the clinically vulnerable were eligible to receive a booster dose. Direct comparisons of the effectiveness of these two vaccines in boosting protection against severe COVID-19 events have not been made in trials or observational data. Methods With the approval of NHS England, we used the OpenSAFELY-TPP database to compare effectiveness of the Pfizer BA.4-5 and Sanofi vaccines during the spring 2023 booster programme, between 1 April and 30 June 2023. We investigated two cohorts separately: those aged 75 or over (75+); and those aged 50 or over and clinically vulnerable (CV). In each cohort, vaccine recipients were matched on date of vaccination, COVID-19 vaccine history, age, and other characteristics. Effectiveness outcomes were COVID-19 hospital admission, COVID-19 critical care admission, and COVID-19 death up to 16 weeks after vaccination. Safety outcomes were pericarditis and myocarditis up to 4 weeks after vaccination. We report the cumulative incidence of each outcome, and compare safety and effectiveness using risk differences (RD), relative risks (RR), and incidence rate ratios (IRRs). Results 492,642 people were 1-1 matched in the CV cohort, and 673,926 in the 75+ cohort, contributing a total of 7,423,251 and 10,173,230 person-weeks of follow-up, respectively. The incidence of COVID-19 hospital admission was higher for Sanofi than for Pfizer BA.4-5. In the CV cohort, 16-week risks per 10,000 people were 22.3 (95%CI 20.4 to 24.3) for Pfizer BA.4-5 and 26.4 (24.4 to 28.7) for Sanofi, with an IRR of 1.19 (95%CI 1.06 to 1.34). In the 75+ cohort, these were 17.5 (16.1 to 19.1) for Pfizer BA.4-5 and 20.4 (18.9 to 22.1) for Sanofi, with an IRR of 1.18 (1.05-1.32). These findings were similar across all pre-specified subgroups. More severe COVID-19 related outcomes (critical care admission and death), and safety outcomes at 4 weeks, were rare in both vaccines so we could not reliably compare effectiveness of the two vaccines. Conclusion This observational study comparing effectiveness of Pfizer BA.4-5 and Sanofi vaccine during the spring 2023 programme in England in the two main eligible cohorts - people aged 75 and over and in clinically vulnerable people - found some evidence of superior effectiveness against COVID-19 hospital admission for Pfizer BA.4-5 compared with Sanofi within 16 weeks after vaccination.


Subject(s)
Pericarditis , Myocarditis , Death , COVID-19
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.12.06.23299602

ABSTRACT

Background: COVID-19 is associated with subsequent mental illness in both hospital- and population-based studies. Evidence regarding effects of COVID-19 vaccination on mental health consequences of COVID-19 is limited. Methods: With the approval of NHS England, we used linked electronic health records (OpenSAFELY-TPP) to conduct analyses in a 'pre-vaccination' cohort (17,619,987 people) followed during the wild-type/Alpha variant eras (January 2020-June 2021), and 'vaccinated' and 'unvaccinated' cohorts (13,716,225 and 3,130,581 people respectively) during the Delta variant era (June-December 2021). We estimated adjusted hazard ratios (aHRs) comparing the incidence of mental illness after diagnosis of COVID-19 with the incidence before or without COVID-19. Outcomes: We considered eight outcomes: depression, serious mental illness, general anxiety, post-traumatic stress disorder, eating disorders, addiction, self-harm, and suicide. Incidence of most outcomes was elevated during weeks 1-4 after COVID-19 diagnosis, compared with before or without COVID-19, in each cohort. Vaccination mitigated the adverse effects of COVID-19 on mental health: aHRs (95% CIs) for depression and for serious mental illness during weeks 1-4 after COVID-19 were 1.93 (1.88-1.98) and 1.42 (1.24-1.61) respectively in the pre-vaccination cohort and 1.79 (1.68-1.91) and 2.21 (1.99-2.45) respectively in the unvaccinated cohort, compared with 1.16 (1.12-1.20) and 0.91 (0.84-0.98) respectively in the vaccinated cohort. Elevation in incidence was higher, and persisted for longer, after hospitalised than non-hospitalised COVID-19. Interpretation: Incidence of mental illness is elevated for up to a year following severe COVID-19 in unvaccinated people. Vaccination mitigates the adverse effect of COVID-19 on mental health. Funding: Medical Research Council (MC_PC_20059) and NIHR (COV-LT-0009).


Subject(s)
Anxiety Disorders , Depressive Disorder , Intellectual Disability , COVID-19 , Stress Disorders, Traumatic , Feeding and Eating Disorders
3.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.08.07.23293778

ABSTRACT

Background Type 2 diabetes (T2DM) incidence is increased after diagnosis of COVID-19. The impact of vaccination on this increase, for how long it persists, and the effect of COVID-19 on other types of diabetes remain unclear. Methods With NHS England approval, we studied diabetes incidence following COVID-19 diagnosis in pre-vaccination (N=15,211,471, January 2020-December 2021), vaccinated (N =11,822,640), and unvaccinated (N=2,851,183) cohorts (June-December 2021), using linked electronic health records. We estimated adjusted hazard ratios (aHRs) comparing diabetes incidence post-COVID-19 diagnosis with incidence before or without diagnosis up to 102 weeks post-diagnosis. Results were stratified by COVID-19 severity (hospitalised/non-hospitalised) and diabetes type. Findings In the pre-vaccination cohort, aHRS for T2DM incidence after COVID-19 (compared to before or without diagnosis) declined from 3.01 (95% CI: 2.76,3.28) in weeks 1-4 to 1.24 (1.12,1.38) in weeks 53-102. aHRS were higher in unvaccinated than vaccinated people (4.86 (3.69,6.41)) versus 1.42 (1.24,1.62) in weeks 1-4) and for hospitalised COVID-19 (pre-vaccination cohort 21.1 (18.8,23.7) in weeks 1-4 declining to 2.04 (1.65,2.51) in weeks 52-102), than non-hospitalised COVID-19 (1.45 (1.27,1.64) in weeks 1-4, 1.10 (0.98,1.23) in weeks 52-102). T2DM persisted for 4 months after COVID-19 for ~73% of those diagnosed. Patterns were similar for Type 1 diabetes, though excess incidence did not persist beyond a year post-COVID-19. Interpretation Elevated T2DM incidence after COVID-19 is greater, and persists longer, in hospitalised than non-hospitalised people. It is markedly less apparent post-vaccination. Testing for T2DM after severe COVID-19 and promotion of vaccination are important tools in addressing this public health problem.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Diabetes Mellitus
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.08.08.22278532

ABSTRACT

Background Successive SARS-CoV-2 variants have caused severe disease in long-term care facility (LTCF) residents. Primary vaccination provides strong short-term protection, but data are limited on duration of protection following booster vaccines, particularly against the Omicron variant. We investigated effectiveness of booster vaccination against infections, hospitalisations and deaths among LTCF residents and staff in England. Methods We included residents and staff of LTCFs within the VIVALDI study ( ISRCTN 14447421 ) who underwent routine, asymptomatic testing (December 12 2021-March 31 2022). Cox regression was used to estimate relative hazards of SARS-CoV-2 infection, and associated hospitalisation and death at 0-13, 14-48, 49-83 and 84 days after dose 3 of SARS-CoV-2 vaccination compared to 2 doses (after 84+ days), stratified by previous SARS-CoV-2 infection and adjusting for age, sex, LTCF capacity and local SARS-CoV-2 incidence. Results 14175 residents and 19973 staff were included. In residents without prior SARS-CoV-2 infection, infection risk was reduced 0-83 days after first booster, but no protection was apparent after 84 days. Additional protection following booster vaccination waned, but was still present at 84+ days for COVID-associated hospitalisation (aHR: 0.47, 0.24-0.89) and death (aHR: 0.37, 0.21-0.62). Most residents (64.4%) had received primary course of AstraZeneca, but this did not impact on pre- or post-booster risks. Staff showed a similar pattern of waning booster effectiveness against infection, with few hospitalisations and no deaths. Conclusions Booster vaccination provides sustained protection against severe outcomes following infection with the Omicron variant, but no protection against infection from 3 months onwards. Ongoing surveillance for SARS-CoV-2 in LTCFs is crucial. Summary The COVID-19 pandemic has severely impacted residents in long-term care facilities (LTCFs). Booster vaccination provides sustained moderate protection against severe outcomes, but no protection against infection was apparent from around 3 months onwards. Ongoing surveillance in LTCFs is crucial.


Subject(s)
COVID-19
5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.29.22278186

ABSTRACT

Introduction The COVID-19 booster vaccination programme in England used both BNT162b2 and mRNA-1273 vaccines. Direct comparisons of the effectiveness against severe COVID-19 of these two vaccines for boosting have not been made in trials or observational data. Methods On behalf of NHS England, we used the OpenSAFELY-TPP database to match adult recipients of each vaccine type on date of vaccination, primary vaccine course, age, and other characteristics. Recipients were eligible if boosted between 29 October 2021 and 31 January 2022, and followed up for 12 weeks. Outcomes were positive SARS-CoV-2 test, COVID-19 hospitalisation, and COVID-19 death. We estimated the cumulative incidence of each outcome, and quantified comparative effectiveness using risk differences (RD) and hazard ratios (HRs). Results 1,528,431 people were matched in each group, contributing a total 23,150,504 person-weeks of follow-up. The 12-week risks per 1,000 people of positive SARS-CoV-2 test were 103.2 (95%CI 102.4 to 104.0) for BNT162b2 and 96.0 (95.2 to 96.8) for mRNA-1273: the HR comparing mRNA-1273 with BNT162b2 was 0.92 (95%CI 0.91 to 0.92). For COVID-19 hospitalisations the 12-week risks per 1,000 were 0.65 (95%CI 0.56 to 0.75) and 0.44 (0.36 to 0.54): HR 0.67 (95%CI 0.58 to 0.78). COVID-19 deaths were rare: the 12-week risks per 1,000 were 0.03 (95%CI 0.02 to 0.06) and 0.01 (0.01 to 0.02): HR 1.23 (95%CI 0.59 to 2.56). Comparative effectiveness was generally similar within subgroups. Conclusion Booster vaccination with mRNA-1273 COVID-19 vaccine was more effective than BNT162b2 in preventing SARS-CoV-2 infection and COVID-19 hospitalisation during the first 12 weeks after vaccination.


Subject(s)
COVID-19 , Death
6.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.23.22272804

ABSTRACT

Summary Background The rate at which COVID-19 vaccine effectiveness wanes over time is crucial for vaccination policies, but is incompletely understood with conflicting results from different studies. Methods This cohort study, using the OpenSAFELY-TPP database and approved by NHS England, included individuals without prior SARS-CoV-2 infection assigned to vaccines priority groups 2-12 defined by the UK Joint Committee on Vaccination and Immunisation. We compared individuals who had received two doses of BNT162b2 or ChAdOx1 with unvaccinated individuals during six 4-week comparison periods, separately for subgroups aged 65+ years; 16-64 years and clinically vulnerable; 40-64 years and 18-39 years. We used Cox regression, stratified by first dose eligibility and geographical region and controlled for calendar time, to estimate adjusted hazard ratios (aHRs) comparing vaccinated with unvaccinated individuals, and quantified waning vaccine effectiveness as ratios of aHRs per-4-week period. The outcomes were COVID-19 hospitalisation, COVID-19 death, positive SARS-CoV-2 test, and non-COVID-19 death. Findings The BNT162b2, ChAdOx1 and unvaccinated groups comprised 1,773,970, 2,961,011 and 2,433,988 individuals, respectively. Waning of vaccine effectiveness was similar across outcomes and vaccine brands: e.g. in the 65+ years subgroup ratios of aHRs versus unvaccinated for COVID-19 hospitalisation, COVID-19 death and positive SARS-CoV-2 test ranged from 1.23 (95% CI 1.15-1.32) to 1.27 (1.20-1.34) for BNT162b2 and 1.16 (0.98-1.37) to 1.20 (1.14-1.27) for ChAdOx1. Despite waning, rates of COVID-19 hospitalisation and COVID-19 death were substantially lower among vaccinated individuals compared to unvaccinated individuals up to 26 weeks after second dose, with estimated aHRs <0.20 (>80% vaccine effectiveness) for BNT162b2, and <0.26 (>74%) for ChAdOx1. By weeks 23-26, rates of SARS-CoV-2 infection in fully vaccinated individuals were similar to or higher than those in unvaccinated individuals: aHRs ranged from 0.85 (0.78-0.92) to 1.53 (1.07-2.18) for BNT162b2, and 1.21 (1.13-1.30) to 1.99 (1.94-2.05) for ChAdOx1. Interpretation The rate at which estimated vaccine effectiveness waned was strikingly consistent for COVID-19 hospitalisation, COVID-19 death and positive SARS-CoV-2 test, and similar across subgroups defined by age and clinical vulnerability. If sustained to outcomes of infection with the Omicron variant and to booster vaccination, these findings will facilitate scheduling of booster vaccination doses.


Subject(s)
COVID-19
7.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.09.22272098

ABSTRACT

Background Long-term care facilities (LTCF) have been prioritised for vaccination, but data on potential waning of vaccine effectiveness (VE) and the impact of booster doses in this vulnerable population remains scarce. Methods We included residents and staff from 331 LTCFs enrolled in VIVALDI (ISRCTN 14447421), who underwent routine PCR testing between Dec 8, 2020 - Dec 11, 2021 in a Cox proportional hazards regression, estimating VE against SARS-CoV2 infection, COVID-19-related hospitalisation, and COVID-19-related death after 1-3 vaccine doses, stratifying by previous SARS-CoV2 exposure. Results For 15,518 older residents, VE declined from 50.7% (15.5, 71.3) to 17.2% (-23.9, 44.6) against infection; from 85.4% (60.7, 94.6) to 54.3% (26.2, 71.7) against hospitalisation; and from 94.4% (76.4, 98.7) to 62.8% (32.9, 79.4) against death, when comparing 2-12 weeks and [≥]12 weeks after two doses. For 19,515 staff, VE against infection declined slightly from 50.3% (32.7, 63.3) to 42.1% 29.5, 52.4). High VE was restored following a third dose, with VE of 71.6% (53.5, 82.7) and 78.3% (70.1, 84.3) against infection and 89.9% (80.0, 94.6) and 95.8% (50.4, 99.6) against hospitalisation, for residents and staff respectively; and 97.5% (88.1, 99.5) against death for residents. Interpretation Substantial waning of VE is observed against all outcomes in residents from 12 weeks after a primary course of AstraZeneca or mRNA vaccines. Boosters restore protection, and maximise immunity across all outcomes. These findings demonstrate the importance of boosting and the need for ongoing surveillance of VE in this vulnerable cohort. Funding UK Government Department of Health and Social Care.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Death
8.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.26.22269885

ABSTRACT

Background General population studies have shown strong humoral response following SARS-CoV-2 vaccination with subsequent waning of anti-spike antibody levels. Vaccine-induced immune responses are often attenuated in frail and older populations such as Long-Term Care Facility (LTCF) residents but published data are scarce. Methods VIVALDI is a prospective cohort study in England which links serial blood sampling in LTCF staff and residents to routine healthcare records. We measured quantitative titres of SARS-CoV-2 anti-spike antibodies in residents and staff following second vaccination dose with ChAdOx1 nCov-19 (Oxford-AstraZeneca) or BNT162b2 (Pfizer-BioNTech). We investigated differences in peak antibody levels and rates of decline using linear mixed effects models. Results We report on 1317 samples from 402 residents (median age 86 years, IQR 78-91) and 632 staff (50 years, 37-58), ≤280 days from second vaccination dose. Peak antibody titres were 7.9-fold higher after Pfizer-BioNTech vaccine compared to Oxford-AstraZeneca (95%CI 3.6-17.0; P <0.01) but rate of decline was increased, and titres were similar at 6 months. Prior infection was associated with higher peak antibody levels in both Pfizer-BioNTech (2.8-fold, 1.9-4.1; P <0.01) and Oxford-AstraZeneca (4.8-fold, 3.2-7.1; P <0.01) recipients and slower rates of antibody decline. Increasing age was associated with a modest reduction in peak antibody levels for Oxford-AstraZeneca recipients. Conclusions Double-dose vaccination elicits robust and stable antibody responses in older LTCF residents, suggesting comparable levels of vaccine-induced immunity to that in the general population. Antibody levels are higher after Pfizer-BioNTech vaccination but fall more rapidly compared to Oxford-AstraZeneca recipients and are enhanced by prior infection in both groups.

9.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.21.22269605

ABSTRACT

Background Recently there has been a rapid, global increase in SARS-CoV-2 infections associated with the Omicron variant (B.1.1.529). Although severity of Omicron cases may be reduced, the scale of infection suggests hospital admissions and deaths may be substantial. Definitive conclusions about disease severity require evidence from populations with the greatest risk of severe outcomes, such as residents of Long-Term Care Facilities (LTCFs). Methods We used a cohort study to compare the risk of hospital admission or death in LTCF residents in England who had tested positive for SARS-CoV-2 in the period shortly before Omicron emerged (Delta dominant) and the Omicron-dominant period, adjusting for age, sex, vaccine type, and booster vaccination. Variants were confirmed by sequencing or spike-gene status in a subset. Results Risk of hospital admission was markedly lower in 398 residents infected in the pre-Omicron period (10.8% hospitalised, 95% CI: 8.13-14.29) compared to 1241 residents infected in the Omicron-period (4.01% hospitalised, 95% CI: 2.87-5.59, adjusted Hazard Ratio 0.50, 95% CI: 0.29-0.87, p=0.014); findings were similar in residents with confirmed variant. No residents with previous infection were hospitalised in either period. Mortality was lower in the Omicron versus the pre-Omicron period, (p<0.0001). Conclusions Risk of severe outcomes in LTCF residents with the SARS-CoV-2 Omicron variant was substantially lower than that seen for previous variants. This suggests the current wave of Omicron infections is unlikely to lead to a major surge in severe disease in LTCF populations with high levels of vaccine coverage and/or natural immunity. Trial Registration Number: ISRCTN 14447421


Subject(s)
COVID-19 , Death , Severe Acute Respiratory Syndrome
10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.27.21264166

ABSTRACT

BackgroundLong Term Care Facilities (LTCF) have reported high SARS-CoV-2 infection rates and related mortality, but the proportion infected amongst survivors and duration of the antibody response to natural infection is unknown. We determined the prevalence and stability of nucleocapsid antibodies - the standard assay for detection of prior infection - in staff and residents from 201 LTCFs. MethodsProspective cohort study of residents aged >65 years and staff of LTCFs in England (11 June 2020-7 May 2021). Serial blood samples were tested for IgG antibodies against SARS-CoV-2 nucleocapsid protein. Prevalence and cumulative incidence of antibody-positivity were weighted to the LTCF population. Cumulative incidence of sero-reversion was estimated from Kaplan-Meier curves. Results9488 samples were included, 8636 (91%) of which could be individually-linked to 1434 residents or 3288 staff members. The cumulative incidence of nucleocapsid seropositivity was 35% (95% CI: 30-40%) in residents and 26% (95% CI: 23-30%) in staff over 11 months. The incidence rate of loss of antibodies (sero-reversion) was 2{middle dot}1 per 1000 person-days at risk, and median time to reversion was around 8 months. InterpretationAt least one-quarter of staff and one-third of surviving residents were infected during the first two pandemic waves. Nucleocapsid-specific antibodies often become undetectable within the first year following infection which is likely to lead to marked underestimation of the true proportion of those with prior infection. Since natural infection may act to boost vaccine responses, better assays to identify natural infection should be developed. FundingUK Government Department of Health and Social Care. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSA search was conducted of Ovid MEDLINE and MedRxiv on 21 July 2021 to identify studies conducted in long term care facilities (LTCF) that described seroprevalence using the terms "COVID-19" or "SARS-CoV-2" and "nursing home" or "care home" or "residential" or "long term care facility" and "antibody" or "serology" without date or language restrictions. One meta-analysis was identified, published before the introduction of vaccination, that included 2 studies with a sample size of 291 which estimated seroprevalence as 59% in LTCF residents. There were 28 seroprevalence surveys of naturally-acquired SARS-CoV-2 antibodies in LTCFs; 16 were conducted in response to outbreaks and 12 conducted in care homes without known outbreaks. 16 studies included more than 1 LTCF and all were conducted in Autumn 2020 after the first wave of infection but prior to subsequent peaks. Seroprevalence studies conducted following a LTCF outbreak were biased towards positivity as the included population was known to have been previously infected. In the 12 studies that were conducted outside of known outbreaks, seroprevalence varied significantly according to local prevalence of infection. The largest of these was a cross-sectional study conducted in 9,000 residents and 10,000 staff from 362 LTCFs in Madrid, which estimated seroprevalence in staff as 31{middle dot}5% and 55{middle dot}4% in residents. However, as this study was performed in one city, it may not be generalisable to the whole of Spain and sequential sampling was not performed. Of the 28 studies, 9 undertook longitudinal sampling for a maximum of four months although three of these reported from the same cohort of LTCFs in London. None of the studies reported on antibody waning amongst the whole resident population. Added value of this studyWe estimated the proportion of care home staff and residents with evidence of SARS-CoV-2 natural infection using data from over 3,000 staff and 1,500 residents in 201 geographically dispersed LTCFs in England. Population selection was independent of outbreak history and the sample is therefore more reflective of the population who reside and work in LTCFs. Our estimates of the proportion of residents with prior natural infection are substantially higher than estimates based on population-wide PCR testing, due to limited testing coverage at the start of the pandemic. 1361 individuals had at least one positive antibody test and participants were followed for up to 11 months, which allowed modelling of the time to loss of antibody in over 600 individuals in whom the date of primary infection could be reliably estimated. This is the longest reported serological follow up in a population of LTCF residents, a group who are known to be most at risk of severe outcomes following infection with SARS-CoV-2 and provides important evidence on the duration that nucleocapsid antibodies remained detectable over the first and second waves of the pandemic. Implications of all available researchA substantial proportion of the LTCF population will have some level of natural immunity to infection as a result of past infection. Immunological studies have highlighted greater antibody responses to vaccination in seropositive individuals, so vaccine efficacy in this population may be affected by this large pool of individuals who have survived past infection. In addition, although the presence of nucleocapsid-specific antibodies is generally considered as the standard marker for prior infection, we find that antibody waning is such that up to 50% of people will lose detectable antibody responses within eight months. Individual prior natural infection history is critical to assess the impact of factors such as vaccine response or protection against re-infection. These findings may have implications for duration of immunity following natural infection and indicate that alternative assays for prior infection should be developed.


Subject(s)
COVID-19
11.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.26.21254391

ABSTRACT

BackgroundThe effectiveness of SARS-CoV-2 vaccines in frail older adults living in Long-Term Care Facilities (LTCFs) is uncertain. We estimated protective effects of the first dose of ChAdOx1 and BNT162b2 vaccines against infection in this population. MethodsCohort study comparing vaccinated and unvaccinated LTCF residents in England, undergoing routine asymptomatic testing (8 December 2020 - 15 March 2021). We estimated the relative hazard of PCR-positive infection using Cox proportional hazards regression, adjusting for age, sex, prior infection, local SARS-CoV-2 incidence, LTCF bed capacity, and clustering by LTCF. ResultsOf 10,412 residents (median age 86 years) from 310 LTCFs, 9,160 were vaccinated with either ChAdOx1 (6,138; 67%) or BNT162b2 (3,022; 33%) vaccines. A total of 670,628 person days and 1,335 PCR-positive infections were included. Adjusted hazard ratios (aHRs) for PCR-positive infection relative to unvaccinated residents declined from 28 days following the first vaccine dose to 0{middle dot}44 (0{middle dot}24, 0{middle dot}81) at 28-34 days and 0{middle dot}38 (0{middle dot}19, 0{middle dot}77) at 35-48 days. Similar effect sizes were seen for ChAdOx1 (aHR 0{middle dot}32 [0{middle dot}15-0{middle dot}66] and BNT162b2 (aHR 0{middle dot}35 [0{middle dot}17, 0{middle dot}71]) vaccines at 35-48 days. Mean PCR cycle threshold values were higher, implying lower infectivity, for infections [≥]28 days post-vaccination compared with those prior to vaccination (31{middle dot}3 vs 26{middle dot}6, p<0{middle dot}001). InterpretationThe first dose of BNT162b2 and ChAdOx1 vaccines was associated with substantially reduced SARS-CoV-2 infection risk in LTCF residents from 4 weeks to at least 7 weeks. FundingUK Government Department of Health and Social Care. Research in ContextO_ST_ABSEvidence before this studyC_ST_ABSWe conducted a systematic search for studies which evaluated SARS-CoV-2 vaccine effectiveness in residents of long-term care facilities (LTCFs) published between 01/01/2020 and 11/03/2021. We used variations of search terms for "COVID-19" AND "vaccine effectiveness" OR "vaccine efficacy" AND "care homes" OR "long term care facilities" OR "older people" on Ovid MEDLINE and MedRxiv. We identified one pre-print article regarding LTCFs in Denmark, which reported that a single dose of BNT162b was ineffective against SARS-CoV-2 infection in residents, however, participants received the second vaccine dose 24 days following the first dose on average, which is likely to be too soon to capture the protective effects of a single vaccine dose. Additionally, we identified two pre-print reports of studies evaluating vaccine effectiveness against symptomatic infection and hospitalisation amongst older adults in the community. The first of these found 81% vaccine effectiveness against COVID-19-related hospitalisation at 28-34 days following a single dose of BNT162b or ChAdOx1 in [≥]80-year-olds. The second of these found vaccine effectiveness against symptomatic infection of 60% at 28-34 days and 73% at 35+ days following a single dose of ChAdOx1 in [≥]70-year-olds. No studies were identified that focused on the effectiveness of a single vaccine dose against infection amongst LTCF residents at more than 4 weeks post-vaccination, a particularly important question in the context of the UK policy decision to extend the dose interval beyond 3 weeks. Added value of this studyWe conducted a prospective cohort study of 10,412 residents aged [≥]65 years, from 310 LTCFs across England, to investigate the protective effect of the first dose of the ChAdOx1 and BNT162b vaccines against SARS-CoV-2 infection in frail older adults. We retrieved results from routine monthly PCR testing, as well as outbreak and clinical testing for SARS-CoV-2, thereby capturing data on asymptomatic as well as symptomatic infections, which we linked to vaccination records. We estimated vaccine effectiveness to be 56% (19-76%) at 28-34 days, and 62% (23-81%) at 35-48 days following a single dose of ChAdOx1 or BNT162. Our findings suggest that the risk of SARS-CoV-2 infection is substantially reduced from 28 days following the first dose of either vaccine and that this effect is maintained for at least 7 weeks, with similar protection offered by both vaccine types. We also found that PCR cycle threshold (Ct) values, which are negatively associated with the ability to isolate virus, were significantly higher in infections occurring at [≥] 28days post vaccination compared to those occurring in the unvaccinated period, suggesting that vaccination may reduce onward transmission of SARS-CoV-2 in breakthrough infections. To the best of our knowledge, our findings constitute the first real-world evidence on vaccine effectiveness against infection for ChAdOx1, in any age group. We can also infer that both vaccines are effective against the B.1.1.7 variant, because our analysis period coincided with the rapid emergence of B.1.1.7 in England during the second wave of the pandemic. Implications of all the available evidenceOur findings add to the growing body of evidence on the protective effect of the BNT162b vaccines in residents of LTCFs and demonstrate the effectiveness of ChAdOx1 in this vulnerable population. Evaluating single-dose vaccine efficacy has become increasingly important in light of extended dosing intervals that have been implemented in order to maximise vaccine coverage across high-risk groups. Further work is required to evaluate the effectiveness of the first vaccine dose after 8-12 weeks, as well as following the second dose, and to evaluate the long-term impact of vaccination on SARS-CoV-2 infection, transmission and mortality in LTCFs. This will inform policy decisions regarding the ongoing need for disease control measures in LTCF such as visitor restrictions, which continue to have a detrimental impact on the wellbeing of residents, their relatives, and staff. Supplementary material attached.


Subject(s)
COVID-19
12.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.08.21253110

ABSTRACT

Background SARS-CoV-2 infection represents a major challenge for Long Term Care Facilities (LTCFs) and many residents and staff are now sero-positive following persistent outbreaks. We investigated the relationship between the presence of SARS-CoV-2 specific antibodies and subsequent infection in this population. Methods Prospective cohort study of infection in staff and residents in 100 LTCFs in England between October 2020 and February 2021. Blood samples were collected at baseline (June 2020), 2 and 4 months and tested for IgG antibodies to nucleocapsid and spike protein. PCR testing for SARS-CoV-2 was undertaken weekly in staff and monthly in residents. The primary analysis estimated the relative hazard of a PCR-positive test by baseline antibody status, from Cox regression adjusted for age and gender, and stratified by LTCF. Findings Study inclusion criteria were met by 682 residents and 1429 staff. Baseline IgG antibodies to nucleocapsid were detected in 226 residents (33%) and 408 staff (29%). A total of 93 antibody-negative residents had a PCR-positive test (0.054 per month at risk) compared to 4 antibody-positive residents (0.007 per month at risk). There were 111 PCR-positive tests in antibody-negative staff (0.042 per month at risk) compared to 10 in antibody-positive staff (0.009 per month at risk). The adjusted hazard ratios for reinfection in staff and residents with a baseline positive versus negative antibody test were 0.13 (95% CI 0.05-0.40) and 0.39 ((95% CI: 0.19-0.77) respectively. Of 12 reinfected participants with data on symptoms, 11 were symptomatic. Antibody titres to spike and nucleocapsid were comparable in PCR-positive and PCR-negative cases. Interpretation The presence of IgG antibodies to nucleocapsid was associated with substantially reduced risk of reinfection in staff and residents for up to 10 months after primary infection. Funding UK Government Department of Health and Social Care Research in context Evidence before this study We performed a systematic search of MEDLINE (Ovid) and MedRxiv on 18 January 2021 for studies in LTCFs that described the risk of infection in individuals who were seropositive for SARS-CoV-2 compared to individuals who were seronegative. Search terms were deliberately broad to improve capture of relevant literature and included “SARS-CoV-2”OR “COVID-19” OR “coronavirus” AND “care home” OR “nursing home” OR “long term care facility” with no date or language restrictions. We did not identify any publications that focussed on risk of reinfection in seropositive individuals, but subsequent to our search one study has been published using data from two LTCFs in London, UK. This study reported a 96% reduction in the odds of reinfection in individuals who were seropositive compared to those who were seronegative based on 4-month follow-up in 161 participants. We found 10 studies that performed seroprevalence surveys in either staff or staff and residents in LTCFs in 8 cohorts. Five of these were carried out in response to SARS-CoV-2 outbreaks within the care homes, either as part of the subsequent investigation or as post-infection surveillance. The largest of these, which enrolled both staff and residents, was performed in 6 LTCFs and performed longitudinal antibody testing. Added value of this study We undertook a cohort study in staff and residents from 100 LTCFs in England to investigate whether individuals with evidence of prior SARS-CoV-2 infection could be infected twice. Staff and residents were offered up to three rounds of antibody testing and antibody results were linked to PCR test results which were obtained weekly from staff and monthly from residents through the national SARS-CoV-2 testing programme. This study, which was conducted in >2000 staff and residents, suggests that antibodies provide high levels of protection against reinfection for up to 10 months. Almost all cases of reinfection were symptomatic, but no cases required hospital treatment. Amongst those with detectable baseline antibodies, quantitative antibody titres against spike protein and nucleocapsid were comparable between cases of reinfection and those who did not become reinfected. Implications of all available evidence Despite high background rates of infection in LTCFs, the overall risk of reinfection was low in this population. This is broadly consistent with findings from large cohort studies of hospital staff, but, importantly, extends the evidence of substantial protection to frail elderly, who are vulnerable to severe outcomes of SARS-CoV-2 due to age-related changes in immunity (immune-senescence) and high levels of comorbidity. The low risk of reinfection in our study suggests identification of immune correlates of protection in this population will require pooling of data across multiple cohorts. As vaccination coverage in residents approaches 100% in England, it will be important to understand whether vaccination and natural infection provide comparable levels of protection against infection. Such insights will inform future policy decisions regarding re-vaccination schedules in LTCF, and the longer-term need for non-pharmaceutical interventions to prevent SARS-CoV-2 transmission, such as asymptomatic testing and visitor restrictions.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL